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Abstract  

Lieberson (1997a,b) and Goldthorpe (2007, 2016), both eminent critics of QCA, argue that 

social life is characterised in part by probabilistic processes. Both claim that QCA is ill-

equipped to respond to this aspect of social reality (Goldthorpe, 2007, 2016, Lieberson, 1991, 

2001). In fact, Ragin, in his earlier work (e.g. 1987), does employ probabilistic language to 

describe differences in outcome by configuration and, later (2000), explicitly discusses the 

role of randomness in the processes generating outcomes. Notwithstanding this background, 

there has been little attention paid to the consequences of such generative randomness – as 

opposed to measurement and sampling error – for the practices of QCA and related set 

theoretic techniques such as CNA. In this exploratory paper we discuss some of these 

consequences.  

The paper has these elements:  

1. We discuss what Lieberson, on the one hand, and Ragin, on the other, have had to say 

about probability, chance and randomness in social life and analysis. We use this 

discussion to develop and set out the approach we use to simulate generative 

randomness in this paper.  

2. We then discuss and analyse invented datasets generated by a mix of deterministic and 

random processes (the latter simulated by the use of a lottery to allocated scarce 

university places) to bring out the problems that generative randomness might raise for 

set theoretic analysis.  

i. We begin with datasets that standard QCA practice can handle adequately. We 

use our discussion of these, first, to note the limitations of purely regularities-

based analyses and, second, to suggest a way of reporting the results of QCA in 

situations where it is known or suspected that the generative mechanism 

includes a random process that leads to “truly” probabilistic outcomes. We also 

argue here that there is an important ambiguity in the way the term 

“probability” has been used by both Lieberson and Ragin, of which any 
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reporting of QCA solutions in terms of probabilistic outcomes must take 

account.   

ii. We then consider a further dataset, also partly reflecting generative 

randomness, that, as a consequence of its solution combining very low suf-

consistency with perfect suf-coverage, causes a number of difficulties for 

typical practice. In turn, we discuss how fsQCA (Ragin and Davey, 2014), 

QCApro for R (Thiem, 2016a,b; developed and expanded from QCA for R, 

Thiem and Duşa, 2013a,b) and Baumgartner’s CNA (Ambuehl et al., 2014, 

Baumgartner, 2009, Baumgartner and Thiem, 2015a) behave in this context. 

Discussing CNA, we give some space to the problems our partly non-

deterministic set-up causes for its capacity to analyse causal chains 

(Baumgartner and Epple, 2014). 

3. Finally, we summarise the lessons of our exploratory analyses, noting some 

outstanding questions.  

The paper is long and detailed. We therefore offer some suggested routes through it. The 

shortest and simplest version, focusing just on fsQCA, would comprise sections 1-5 plus 9. A 

slightly longer version, comprising sections 1-6 and 9, adds a discussion focused on the R-

based QCApro. For the reader interested in CNA, and the analysis of causal chains, sections 7 

and 8 should also be read.  

 

1: Introduction 

The debate on the capacity of set theoretic methods to deliver causal knowledge continues to 

develop in breadth and depth.  A somewhat neglected issue, however, is how the various 

instantiations of set theoretic methods in software and/or as best practice rules behave when 

confronted by datasets whose generation reflects not just sampling and measurement error but 

rather, as part of the underlying causal structure generating the outcome, some random 

process. There has been some discussion of this issue (see, e.g., Ragin, 1995; 2000:108-9, 

222-3, 226-9). However, many scholars aim to establish deterministic (i.e., non-probabilistic) 

accounts of the causal paths to some outcome, with any failure to do so being understood by 

reference to omitted causal conditions or measurement and/or sampling error. The indices of 

consistency and coverage employed to assess the degree of fit to perfect relations of 

sufficiency and necessity, for example, are often seen as addressing the problem of “noise” in 

data (e.g. Baumgartner and Epple, 2014). Instead, we want to explore these indices in 

situations where there is generative randomness involved in the production of some outcome. 
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We will develop our discussion by considering invented datasets generated partly by such 

random processes but, to keep the treatment manageable, not affected in any way by 

sampling or measurement error. By random generative processes, we refer to processes 

similar to those than can be simulated by the operation of roulette wheels, dice throws or 

lotteries1. 

Our interest in this topic has been reinforced by the fact that two eminent critics of QCA have 

written extensively on the role of probabilistic processes in social life (Goldthorpe, 2007, 

2016, Lieberson, 1997a,b) and, furthermore, have claimed that the advocates of logical 

approaches such as QCA have paid insufficient attention to the problems such processes 

produce for Boolean approaches (Goldthorpe, 2007, 2016, Lieberson, 1991, 2001). Lieberson 

(2001), reviewing Ragin (2000), claims that the author 

seems to be forced to resort to using probabilistic procedures to determine whether there is a necessary 

condition or a sufficient condition. This not only sounds like an oxymoron, it is. We have conditions 

deemed to be "almost always necessary" (p. 272) and "almost always sufficient" (p. 279). He feels free to 

resort to a probabilistic view because this allows for measurement and translation imprecisions. He is 

unwilling to entertain the possibility that the deviations are not errors, but rather that the conditions are 

not truly necessary or not truly sufficient, but are simply probabilistic statements. He provides no 

procedure for distinguishing between the two centrally different reasons. What is crucial here is that when 

you begin to think of a concept such as a necessary condition being one which is not fully so, then you 

are shifting over to the basic way many conventional social scientists think: conditions that increase or 

decrease the likelihood of some outcome.  

Lieberson (2004) repeated this view that QCA does not adequately allow for “chance and 

probabilistic processes”. Goldthorpe (2016: 53), arguing that social analysis should primarily 

focus on establishing and explaining “probabilistic regularities”, also argues that usages such 

as “almost sufficient” are oxymoronic. He claims (53-54) that QCA can make no allowance 

for “essential chance” (Monod, 1971), i.e. of the possibility that processes in the social world 

are not fully deterministic in nature.  

We can understand the unhappiness of some social scientists with such unconventional 

usages but will argue that there is a defensible way to avoid the apparent difficulties of 

conjoining terms like “usually” and “almost” with “necessary” and “sufficient”. Our 

approach is related to that used in an early paper by Ragin (1995) but we will also take 

account of the arguments of Lieberson and Goldthorpe concerning “probabilistic processes”2. 

However, given the critical comments on Ragin’s work just referred to, we should, before 

moving on, consider what he has written about probability and randomness in the context of 

Boolean analysis.  
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2: Ragin on QCA, Randomness, Probability and Contingency 

Most of the discussion of randomness in the QCA literature has focused on measurement 

(including calibration) and sampling error (e.g. Skaaning, 2011, Thiem, Spöhel and Duşa, 

2016)3 rather than the ways generative random processes might interact with deterministic 

causation in producing outcomes4. There has, however, been some discussion of 

“probabilistic processes” in the context of outcome generation. It is Ragin (2000), rather than 

others who have developed his work5, who has had most to say on this. However, before 

discussing his remarks there, we need to consider the more conventional references he made 

to “probabilities” – as “relative frequencies” – in his earlier work. In this work, Ragin 

followed conventional quantitative researchers in referring to the “probabilities” of various 

outcomes. Ragin et al. (1984: 229-230), discussing a Boolean analysis of discrimination in 

employment, note: 

Once individuals are aggregated into similar situations, however, their scores on the dependent variable, 

promotion, are aggregated into the probability of promotion for individuals who share a given 

combination of values. Thus, it is necessary to assign these probabilities to pass or fail conditions or to 

trichotomize them into pass, fail, or neither pass nor fail. (our italics) 

Ragin (1987: 117) talks of “probabilities of success … for each causal combination”. Ragin 

and Bradshaw (1991) use similar terminology. This interpretation of QCA in terms of 

probabilities also characterises Ragin (1995), where he analyses outcomes by configuration in 

terms of three degrees of likelihood: uniform (all cases achieve the outcome), likely and 

possible6. In this framework, “probabilistic outcomes are intermediate between uniform and 

possible outcomes”. In these papers, then, Ragin employs “probability” in a conventional 

manner. Relative frequencies, derived from the study of some sample, are used as estimates 

of the “probability” of individuals, with certain characteristics, achieving some outcome, 

ceteris paribus7.  

In later work, Ragin (2000: 108) does explicitly note, alongside those of complexity, 

measurement error and the “misconstructing” of populations on QCAs, the effects of 

“random factors”: 

Consider again the example of strikes that occur in response to the introduction of technology 

opposed by workers. Suppose a charismatic worker makes a stirring speech on the behalf of the new 

technology and convinces workers not to go on strike, but instead to give the new production 

techniques a try. Suppose a flood closes the plant for a month, and then workers flock back to work, 

eager for overtime bonuses, when the waters recede. Suppose anarchists have infiltrated the union 

leadership, and the rank-and-file members refuse to follow any of their recommendations, no matter 

how sensible they may seem. There are many such minor, obscure, or random factors that might 

interfere with the expected connection between a cause and an effect. It is virtually impossible to 

construct social scientific models that take account of every possible factor that might influence some 

action or outcome.  

And later, he refers to “randomness” (223): 
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The third issue is randomness. Even with precise measures and well-reasoned translations to fuzzy 

membership scores, the researcher is still likely to confront ill-fitting data. The social world is 

multicausal, and a variety of causal conditions unique to each case, including exogenous events like 

snowstorms and flu epidemics, affect every outcome. Thus, cases almost never plot exactly where they 

"should." Consider again the hypothetical analysis of communities with drug problems. Some 

communities may be more resistant or more vulnerable to drug problems than others, depending on 

their histories. Community-specific differences may be 'very difficult to detect, much less to 

operationalize and measure in a meaningful cross-case manner. Thus, factors relevant to each specific 

community are likely to be left out of the analysis altogether, increasing the lack of fit between 

membership in the outcome and membership in relevant causal conditions. 

Here “randomness” seems to be understood more as coincidence or contingency8, concerning 

factors external to the explored model, than as the sort of randomness characterising such 

activities as dice-throwing. “Randomness” here might be seen as an example of a Cournot 

Effect, where two or more apparently independent causal chains converge to produce a 

chance outcome (Boudon, 1986: 175)9. Boudon gives the oft-used example of a slate falling 

from a roof and hitting a passer-by. While the slate falling and the man passing are open to 

causal explanation, the fact that the two events converge is not causally determined10. Since 

this account of “randomness” does provide one basis for arguing, with Lieberson and 

Goldthorpe11, that there are random generative processes in the social world or at least, but 

more weakly, that there are processes that we will effectively have to treat as if they are 

random, given limited theoretical knowledge and limited access to data, it is worth noting 

Boudon’s formalisation of a Cournot Effect. He writes (178-9): 

Chance is therefore not nothing. It is a particular form that sets of cause/effect linkings as perceived 

by a real observer can take on. Some of them have a total form of order …. Others have a partial form 

of order …. Others contain contingent links (the series “A causes B, which causes C” occurs at the 

same time as “P causes Q, which causes R”) but it is impossible to decide whether the 

synchronization is really between B and P, B and Q or C and Q. It is therefore impossible to tell 

whether event BP, BQ or CQ will necessarily be brought about. And the three events can have very 

different consequences. So there is such a thing as chance .… We must see chance not as a substance, 

a variable or a set of variables, but as a structure which is characteristic of certain sets of causal chains 

as perceived by an observer.  

We have here one way of justifying the claim that we need to take chance seriously. 

Although the example concerns a singular outcome, it can be seen that, in the context of a 

concern with the quasi-regularities that characterise such matters as the relations between 

socio-economic factors and educational and/or health outcomes, we could, by applying a 

similar argument to each individual case, provide an argument that, as Goldthorpe (2016) 

claims, social scientists will typically be faced with “probabilistic regularities” as their 

explanandum. Boudon, employing Cournot’s insight, provides a viable account of Ragin’s 

(2000) “randomness”. 

It might be objected that the processes being described are not in themselves “probabilistic” 

in the same way that quantum processes are thought to be in physics12.  Boudon’s phrase “as 

perceived by an observer” hints at this problem. There will, in fact, be degrees of 
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(un)predictability here. One scholar might argue that the causes of health problems (one 

causal series) are “independent of but interfere with” the causal processes operating in the 

educational sphere (a second causal series): a child expected to achieve well in fact does not 

due to illness. However, another might reasonably respond that social class plays a role in 

both of these causal series and, to this extent, the assumption of independent series is one to 

be questioned. Claims of independence will be contestable. To avoid such contestability, we 

employ in this paper a more clear-cut approach to generative randomness. We assume that 

there are devices that can be taken to simulate random processes. We use the device of a 

lottery but die-throwing would serve equally well13. In our simulations, we embed our device 

in an otherwise deterministic closed system with known to us causal conditions, processes 

and outcomes. We explore the behaviour of set theoretic methods in such settings.  

Our purpose, then, is to discuss how set theoretic approaches cope with invented datasets 

whose generation incorporates a known random process, with a lottery representing that 

process. Our discussion has practical relevance. Since there are lotteries in the world then, 

assuming that a lottery can be taken to represent randomness, there are random elements in at 

least some areas of social life, i.e. those that include lotteries as part of their operation. These 

include education as part of admissions procedures and, of course, gambling14. However, our 

motivation for developing these datasets is our wish to explore what we can learn from 

analysing them that might be of more general use to those interested in currently 

recommended procedures for sufficiency and necessity-based causal analyses. The lottery is 

being used here as a convenient device to simulate randomness.  

Although we have given the paper a realistic flavour by discussing an imagined educational 

context, we think that nothing in our discussion hinges on this. We develop our arguments, as 

we have done elsewhere (Cooper and Glaesser, 2011, 2015a,b, 2016), by undertaking a range 

of analyses of invented datasets. A key point is that we, as the inventors, will know the causal 

relations and “random” processes that generated the data. However, we initially simulate the 

work of a scholar who doesn’t share our designer’s knowledge and must therefore focus on 

observable regularities. We thereby concentrate on the most basic form of set theoretic 

analysis, that of regularities. We also restrict ourselves to parsimonious solutions of truth 

tables. This keeps our discussion simpler. It is also the case that some scholars (e.g. 

Baumgartner (2015) and Baumgartner & Thiem (2015b) argue that, given a causal focus, 

only parsimonious solutions can be relied upon to produce valid results. Ragin (2008), 

however, suggests that parsimonious solutions should be used with caution. As it happens, we 

will be discussing models of invented population-level datasets where we assume we have 
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access to data on all possible cases, and we think that our arguments here are independent of 

those concerning the choice between parsimonious, intermediate and conservative/complex 

solutions (see Cooper and Glaesser, 2015b, Schneider and Wagemann, 2012, 2015, and 

Thiem 2015a for recent discussions of the implications of limited diversity). 

The first datasets discussed are designed so that conventional thresholds for consistency with 

sufficiency are easily met. The discussion of these enables us to present an appropriate form 

of set theoretic description for regularities generated partly by random processes. 

Subsequently we discuss a more difficult but crucial case where conventional thresholds for 

quasi-sufficiency are not met but indices of coverage are high. We argue that, in this 

consistency/coverage context, the consequences of generative randomness for standard 

advice on the use of consistency and coverage measures need to be more widely considered 

and understood.    

 

3: Three invented worlds with high suf-consistency and perfect suf-coverage for an 

outcome 

We assume initially that a scholar has no knowledge of the processes and mechanisms linking 

conditions and outcome, i.e. of the generative mechanisms and processes producing by our 

design the analysed dataset. Clearly, this pure separation of knowledge of regularities and 

generative mechanisms does not characterise actual research practice. Even in choosing 

factors to analyse, researchers draw on theoretical knowledge of how or why these might 

affect some outcome. Some writers on Boolean approaches do, however, argue that the causal 

relevance of factors can, in some circumstances, be established by analysing regularities (e.g., 

Baumgartner, 2008)15. Others act as if this were the case, paying little attention to generative 

mechanisms16. Our reason for focusing initially on regularities is methodological. This 

enables us to note that identical solutions can arise from analysing regularities generated by 

different mechanisms. In particular, we are able to show why “random” generative processes 

complicate recommended standard practices. We mainly employ upper / lower case notation 

to indicate the presence / absence of binary conditions and outcomes. We abbreviate 

configurations containing logical AND such as “A AND B AND c” to simply ABc, and use + 

for logical OR. Occasionally, for clarity, we indicate that a condition has the value 1 or 0 

explicitly. Finally, where the output from software uses an asterisk to indicate AND we 

sometimes retain this for formatting purposes.  
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We employ initially a simple example to prepare the ground for discussing a more complex 

model. Consider Figure 1. Some single factor X is thought to be causally relevant for Y, but 

our scholar has no knowledge of what goes on within the black box.  

 

Figure 1: Y=f(X) 

 

The X-Y truth table (with 2000 cases) is found to be Table 1. Using the fsQCA software with 

a 0.9 consistency threshold, the scholar finds X is quasi-sufficient (suf-consistency=0.9) and 

necessary for Y (nec-consistency=1.0) 

Table 1: truth table for Y=f(X) 

X Number of cases 

with outcome: Y 

Number of cases 

without outcome: y 

Consistency for Y Number of cases 

0 0 1000 0 1000 

1 900 100 0.9 1000 

 

Many would be happy with the indices here (0.9 / 1.0). Others might want to find other causal 

conditions that, combined with X, might improve suf-consistency. They might add conditions 

to the model without explicitly addressing the processes within the black box. Others might 

aim to “explain” the 0.9 level of consistency. To achieve this, they would, we believe, need 

more knowledge of processes in the black box. The obvious way of gaining this would be to 

use process tracing (Collier, 2011, George and Bennett, 2005, Glaesser, 2015) to ascertain the 

nature of the processes connecting X and Y.  

We now make the discussion more substantive by assuming X is some measure of high 

academic ability and Y the achievement of a university degree. We can then construct three 

expanded versions of the dataset by introducing alternative sets of invented factors and 

processes intervening between X and Y to create the X-Y regularities. Each of these three 

datasets reflects an alternative possible set of processes and mechanisms. Importantly, one of 

these datasets by our design includes effects generated partly by a deliberately random 

process (a lottery).  To keep our discussion simpler, we assume that these are population level 

data, ensuring we have no sampling error, and also that there is no measurement/calibration 

error. Assume then there are three invented societies under study (each with a relevant 
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population of 2000). While the processes linking X and Y differ, all three have the X-Y 

regularities in Table 1. We can model these differing processes by adding intervening factors 

to the truth table.  These are shown in Table 2 (society A), Table 3 (society B) and Table 4 

(society C). In society A, all cases with X (and only these) achieve S (a secondary school 

diploma), and 90% of those with S achieve Z (a higher level of pass). All of those with Z 

(and only these) enter university and achieve a degree. In society B all of those with X=1 

(and only these) gain S. All of those with S (and only these) enter the university, but 10% 

drop out before achieving their degrees. Finally, in society C, all of those with X=1 (and only 

these) achieve the secondary school pass, S, and these individuals (who all want to attend 

university) must enter a lottery (used to distribute scarce places to 90% of the lottery 

participants), the winners of which gain a place in the university. The latter all achieve a 

degree. Only individuals with S=1 are allowed access to this lottery.  

Table 2: Society A 

X (high 

academic 

ability) 

S (Secondary 

school diploma: 

pass) 

Z (Secondary 

school diploma: 

pass at higher 

level) 

Number 

achieving a 

university 

degree: Y 

Number not 

achieving a 

university degree: y 

Consistency for Y 

(achieving a 

university degree) 

0 0 0 0 1000 0 

1 1 0 0 100 0 

1 1 1 900 0 1 

 

Table 3: Society B 

X (high 

academic 

ability) 

S (Secondary 

school diploma: 

pass) 

E (enters 

university: but 

10% drop out) 

Number 

achieving a 

university 

degree: Y 

Number not 

achieving a 

university degree: y 

Consistency for Y 

(achieving a 

university degree) 

0 0 0 0 1000 0 

1 1 1 900 100 0.9 

 

Table 4: Society C 

X (high 

academic 

ability) 

S (Secondary 

school diploma 

(pass)) 

L (Entered for a 

Lottery with 90% 

winners) 

Number 

achieving a 

university 

degree: Y 

Number not 

achieving a 

university 

degree: y 

Consistency for Y 

(achieving a 

university degree) 

0 0 0 0 1000 0 

1 1 1 900 100 0.9 

 

Crucially, in each of these societies, if the model Y=f(X) is analysed, X will be found to be 

necessary and (quasi-)sufficient for Y with identical suf-coverage (1.0) and suf-consistency 

(0.9) figures. A regularities-based analysis of just Y=f(X) does not distinguish between these 

three scenarios17. But how should a scholar respond to the case of Society C, assuming now 

s/he does, at a second stage, gain knowledge of the mechanism involving a lottery that links 
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X and Y here? We think that, if the analysis is simply of Y=f(X), the following expressions 

capture Society C: 

Equation 1 

{X=1} = > {Probability(any such individual gets a degree)=0.9}.  

Equation 2 

{Having a degree} => {X=1} 

A key point is that the probability in Equation 1 correctly describes the individual case as 

well as the configuration. Each case with X=1 in society C enters the lottery and has a 0.9 

probability of achieving a degree. This probability becomes an objective characteristic of 

these cases in the same way that the probability of 1/6 of obtaining a six is an objective 

feature of a tumbled die. It is a feature of the invented world. It is also the case, of course, 

that if the researcher were randomly to pick a case (late enough in the life cycle) from within 

the set having X=1 in society C then the probability of this case having a degree would be 0.9 

– in the alternative sense that if this sampling were repeated (with replacement) then, in the 

long run, 90% of picks would have a degree. The “dispositional” probability at the level of 

the case and the “relative frequencies” probabilities match. This identity of the two arises 

from the role of the lottery: society C is really partly probabilistic. It is because the 

dispositional probability of any case with X=S=1 gaining a degree is 0.9 in this world itself 

that the proportion gaining a degree is found to be 0.9 by the researcher investigating 

Y=f(X)18.  

The situation in societies A and B is different. While a QCA of Y=f(X) produces the same 

result as society C, it is not so clearly the case that the dispositional probabilities at the 

individual case level match the “relative frequency” probabilities at the configurational level. 

A researcher randomly picking cases from the set with X=1 will again find that, in the long 

run, 90% gain degrees. But it may not be the case, in these two societies, that each individual 

with X=1 has a 0.9 chance in the objective sense that they do in society C of gaining a 

degree. If we assume, for illustration, that the link in society A between X, S and Z involves 

no randomness but is, in fact, partly determined by some other unmeasured factor P (such as 

private tutoring), then the actual situation might be that any case with XSp has a zero 

“chance” of getting a degree and any case with XSP has a 100% “chance”. Similarly, in 

society B, dropout may not be random but caused by unmeasured factors. For these reasons 

we think that, in societies A and B, the use of Equation 1 is not so clearly justified as it is for 

society C. Rather, since it is likely not the case that all individuals with X=1 have an equal 

random chance of achieving the degree, we would seem instead to have: 
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Equation 3 

{X=1} = > {Proportion of such cases with Degree) =0.9}.  

Equation 4 

{Having a degree} => {X=1} 

We think that Lieberson, who tends to argue that we should assume “as if” probabilistic 

processes when we can’t fully model the social world (1997a, especially pp. 364–5 and pp. 

374–5), may not pay enough attention to such differences as that between societies C and 

A/B. Some of Ragin’s references to “probabilities” in the context of QCA also seem open to 

the same line of criticism. The use of a probabilistic description like that in Equation 1 needs 

to be explicitly justified and this, we think, requires knowledge of the processes and 

mechanisms within black boxes, and not merely a study of the regularities generated by such 

processes. Of course, the rhetoric of QCA recommends “going back to the cases” and using 

theory to achieve this goal (see De Meur et al., 2009, on the “black box problem”) but many 

published QCAs don’t – in practice – seem to address these process issues in a manner that 

would allow us to decide between solutions like Equation 1 and Equation 3. We now turn to a 

more difficult scenario, one we think that current standard practice might well misinterpret. 

 

4: An invented world with very low suf-consistency but perfect suf-coverage for an 

outcome  

We now consider a more complex situation, more similar than the simple X-Y model in 

Table 1 to normal QCA practice in that it includes several causal conditions. Crucially, its 

analysis in terms of sufficiency generates an apparently unacceptably low proportion of cases 

with the outcome in all rows of the truth table.  At first glance this suggests that an analysis of 

this dataset, where suf-consistency is “too low” (but suf-coverage is, as in Table 1, high), in 

terms of quasi-sufficiency is inappropriate, but we argue that it is only with secure knowledge 

of processes and mechanisms that we can safely move from low consistencies with sufficiency 

to this negative conclusion.  For this reason, the dataset / causal structure we discuss here is, 

in our view, something like a critical case for QCA and related approaches. We draw on the 

previous section to suggest a way of treating it.  

The new dataset includes these binary factors: 

 “H” indicates completion of higher education.  

 “C” indicates membership of the dominant social class (of two).  

 “M” indicates male.  
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 “A” indicates having “high” ability.  

 “E” indicates membership of one particular ethnic group (of two).  

 “S” indicates having a secondary education diploma. 

At various points we make use of some or all of these. We consider in particular the 

perspective of a scholar who has access to the set {C, A, M, E, H} and who undertakes a set 

theoretic analysis of H as a function of {C, A, M, E}. In doing this, we assume that s/he 

analyses merely the regularities19 that exist between the input to and output from the black 

box shown in Figure 2. We again assume initially that our scholar does not know in any detail 

what causal processes / mechanisms operate in the black box but is simply assuming that all 

of C, A, M and E are causally relevant for H, and has access to a secondary dataset 

containing {C, A, M, E, H}. 

 

 

Figure 2: H=f(C,A,M,E) 

 

Before considering these regularity-focused analyses, we describe the processes that we, as 

inventors of this world, know are operating within the black box, describe how these 

processes generate the observed regularities, and present a way in which these regularities 

can be described set theoretically which employs our knowledge of the nature of the 

generative processes. This description developed with knowledge of the underlying causal 

structure provides the background for our discussion of the work of our purely regularities-

focused scholar. We, the inventors of this world, have arranged that the factors {C,A,M,E} 

completely  determine, in a configurational manner, whether an individual achieves the 

important intermediate factor, S, a secondary school diploma20. This “S” is not, of course, one 

of the conditions available as part of the input/output model in Figure 2. We assume initially 

that the factor S is not available in the dataset to which our imagined scholar has access. The 

configurations leading to S are those set out in Table 5 while Table 6, columns 1-5, provides 

the full truth table for S=f{C,A,M,E}. We assume also that the number of cases in each row 

of Table 6 (the Ni) are identical21.  
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Table 5: Configurations leading to S 

c A M e 

c A M E 

C A m e 

C A m E 

C a M E 

C A M e 

C A M E 
 

Table 6: truth table for S=f{C,A,M,E}. 

C A M E S Proportion completing higher education (H=1) Number 

0 0 0 0 0 0 N1 

0 0 0 1 0 0 N2 

0 1 0 0 0 0 N3 

0 1 0 1 0 0 N4 

0 0 1 0 0 0 N5 

0 0 1 1 0 0 N6 

0 1 1 0 1 0.6 N7 

0 1 1 1 1 0.6 N8 

1 0 0 0 0 0 N9 

1 0 0 1 0 0 N10 

1 1 0 0 1 0.6 N11 

1 1 0 1 1 0.6 N12 

1 0 1 0 0 0 N13 

1 0 1 1 1 0.6 N14 

1 1 1 0 1 0.6 N15 

1 1 1 1 1 0.6 N16 
 

We, the inventors of this world, have also specified that all individuals achieving S wish to 

enter higher education (H). However, because of a scarcity of places, only a proportion of 

these can enter. Each configuration in Table 5, i.e. those with S=1, is taken separately, and all 

of its cases are entered into a lottery. Sixty percent of cases in each of these configurations 

enter higher education as a result of this random process. All of these then complete higher 

education. The resulting truth table is shown in the first six columns of Table 6. Before 

exploring in detail what QCA and CNA make of this dataset, we discuss briefly contrasting 

ways of understanding the regularities in Table 6. First, we can note that, on most views of 

what sufficiency is, none of the configurations approach being sufficient for H. The highest 

consistencies are 0.6. Secondly, we can also note that, for a researcher wanting to explain 

every individual case’s actual outcome, any random process, like our lottery, makes this 

impossible. We cannot predict with certainty, on the basis of {C,A,M,E}, whether any 

individual belonging to the sets in Table 5 ends up with H. On the other hand, it is clearly 

necessary to be a member of one of the configurations in this table to achieve H. However, 

we can state, for any of these configurations, assuming that the lottery is truly random, that 

the probability of any individual case achieving H is 0.6.  Given, that is, that we, as the 
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inventors of the data-generating processes, do have knowledge of the lottery-based 

generative mechanism, we can use the form of description already used in Equation 1 and 

Equation 2 to represent these partly causal processes in a manner that does descriptive justice 

to the truth table. In non-minimised form, we obtain: 

Equation 5 

cAMe+cAME+CAme+CAmE+CaME+CAMe+CAME => {Probability(any such individual gets a degree)=0.6} 

Equation 6 

{Having a degree} => cAMe+cAME+CAme+CAmE+CaME+CAMe+CAME 
 

Minimising, on a Quine-McCluskey basis, gives: 

Equation 7 

AC+AM+MCE => {Probability(any such individual gets a degree)=0.6} 

Equation 8 

{Having a degree} => AC+AM+MCE  

 

Having set out this way of describing and analysing the truth table22, from the perspective of 

its inventors who know the processes inside the black box, we now move to consider the set 

theoretic researcher who undertakes analyses without this knowledge of generative processes 

and mechanisms. His/her initial focus is again on the regularities. We do this in stages. First, 

employing fsQCA, we present and discuss a QCA of the simple input/output model in Figure 

2. We then explore analyses using QCApro (Thiem, 2016a,b) and CNA (Ambuehl et al., 

2014).   

 

5: A QCA, employing fsQCA, of H=f(C,A,M,E)   

What happens in practice, when a QCA focusing purely on regularities is performed 

employing the four inputs C, A, M and E and the output H? If fsQCA is used to assess the 

sufficiency of the various configurations of C, A, M and E then, using any consistency 

threshold recommended in the literature (usually above 0.75), no combination of these factors 

is found that is quasi-sufficient for H.  So far, this represents an apparent failure to account 

for the outcome. A researcher might decide to break “best practice” rules to explore what 

happens when s/he sets a lower consistency threshold. S/he gradually lowers the threshold, 

testing H=f(C,A,M,E).  Eventually, when a conventionally unacceptable (very low) threshold 

of 0.59 is reached, this parsimonious “solution” is found: 
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             raw       unique                
           coverage    coverage   consistency   
          ----------  ----------  ----------    
CA       0.571429    0.285714    0.600000  
MA       0.571429    0.285714    0.600000  
CME      0.285714    0.142857    0.600000  
 
solution coverage: 1.000000  
solution consistency: 0.600000 
 

Now, while the overall solution and its configurational components do not reach levels that 

would allow any claims of quasi-sufficiency, the solution, according to a common 

interpretation of coverage, explains all of the outcomes23. However, any researcher who 

followed standard advice (Ragin, 2006; Schneider and Wagemann, 2012:133) only to assess 

coverage after quasi-sufficiency had been established would not, of course, get to this stage. 

In QCA circles, a conventional way of describing this result, assuming it had not been 

dismissed because of the low suf-consistency scores, might be that being a member of the set 

AC+AM+MCE is necessary but is not sufficient for H. Our own view is that, given 

knowledge of the lottery operation – which would become available from process-tracing the 

careers of cases inside the black box – a better description is the one we used earlier: being a 

member of the set AC+AM+MCE is both necessary for H and sufficient to raise the 

probability of H for each case in these configurations to 0.6. Crucially, recommended practice 

concerning consistency levels has to be ignored to find this solution. In addition, we think 

that the description of the solution in terms of probability is only justified given secure 

knowledge that there is a random generative process operating here.  

Since the above discussion suggests that our invented society is more easily open to a 

standard analysis of its regularities in terms of necessity than of sufficiency, it is worth 

looking at what the R-based package QCApro (Thiem, 2016a,b; see also Thiem and Duşa, 

2013a,b for an earlier version) and Baumgartner’s CNA (Ambuehl et al., 2014; Baumgartner, 

2009, Baumgartner & Thiem, 2015a) – both of which take the analysis of necessity as 

seriously as that of sufficiency - make of these regularities. We start, next, with the R-based 

QCA, using the recently available version QCApro (Thiem, 2016a). 

 

6: The R-based QCApro Package: addressing H=f(C,A,M,E) 

First, sufficiency. If we use the eQMC function with a threshold of 0.75, QCApro reports no 

solution. However, if we drop the sufficiency threshold to 0.6, QCApro’s eQMC function 

straightforwardly reproduces the fsQCA solution, and the output, through its use of the 

double implication sign and the reported coverage of 1.0 for the overall solution, also reports 

that “AC+AM+MCE” is necessary for H24. Similarly, employing the superSubset function for 
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the model H=f(C,A,M,E) with a threshold of 0.75, we obtain, testing for sufficiency, no 

solutions. If we lower the threshold to 0.6, superSubset reports the components of the fsQCA 

solution for sufficiency, AC+AM+MCE. If we focus on necessity, using the superSubset 

function with a threshold of 0.75, the result is somewhat complicated to interpret: 

 

            incl   cov.r  
------------------------  
1  A        0.857  0.450  
2  M+e      0.857  0.300  
3  M+E      0.857  0.300  
4  C+e      0.857  0.300  
5  C+E      0.857  0.300  
6  C+M      1.000  0.350  
7  c+m+E    0.857  0.257  
8  c+a+m+e  0.857  0.240  
------------------------  

 
If instead we use a threshold of 1.025, we obtain the simpler: 

        incl   cov.r  
--------------------  
1  A+E  1.000  0.350  
2  A+M  1.000  0.350  
3  C+M  1.000  0.350  
4  C+A  1.000  0.350  
--------------------  
 

FsQCA reported AC+AM+MCE as necessary for H (with perfect nec-consistency). This 

superSubset result is clearly compatible with the fsQCA result. For example, consider M+C. 

Then, if both of M and C are not given, then none of the terms of “AC+AM+MCE” are 

satisfied26.  We can further note from the superSubset results that (A+E)(A+M)(C+M)(C+A) 

is necessary for H. Multiplying this out and simplifying the result using the rules of Boolean 

algebra produces the result that AC+AM+EMC is necessary for H.  

Summarising, a scholar who began with a QCApro analysis using eQMC and a threshold of 

1.0 for suf-consistency but gradually lowered this, in the light of “no solutions”, until 0.6 was 

reached, would eventually achieve the solution, AC+AM+MCE <=> H. The same would 

apply to a superSubset analysis of sufficiency. Undertaking a superSubset analysis of 

necessity, starting with a nec-consistency of 1.0 would produce a result from which H => 

AM+CA+CME can be derived. Crucially, as in the previous section, recommended practice 

concerning consistency thresholds has to be ignored to find the correct solution of the lottery-

based dataset. In addition, to interpret correctly the low consistency / high coverage overall 

eQMC solution (see Equation 7, Equation 8) requires knowledge of the causal / generative 

processes operating here.  
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7: A CNA of H=f(C,A,M,E) 

Initially following its creator’s advice, we explore how CNA copes with our {C,A,M,E,H} 

dataset and, subsequently, since CNA has been designed to analyse chain structures 

(Baumgartner, 2009), we explore how it copes with the chain through S embedded in 

{C,A,M,E,S,H}, the dataset augmented by adding S.  

Baumgartner (2015) argues that, in undertaking Boolean analyses of causes, we are seeking 

Boolean difference-makers, defined thus: 

Boolean difference-making (BD): A factor A is a Boolean difference-maker of an outcome E if, and 

only if, A is contained in a minimally sufficient condition AX of E such that AX, in turn, is contained 

in a minimally necessary condition of E. 

Given the model H=f(C,A,M,E) then, in the solution “AC+AM+MCE  <=> H”, all of A, C, 

M and E are such difference-makers, as long as we interpret the => part of the equation in the 

probabilistic fashion described earlier27. Baumgartner and Epple (2014) also argue that, in 

analysing sufficiency, the suf-coverage should be given as much weight as the suff-

consistency28: 

In the QCA literature, usually, only lowest bounds are provided for suf-consistency thresholds. For 

instance, Schneider and Wagemann (2010) recommend a lowest bound of 0.75 for suf-consistency. 

We contend, however, that there are good reasons to impose lowest bounds at least for suf-coverage 

of whole solution formulas as well. The suf-coverage of a solution formula being low means that it 

only accounts for few instances of an outcome. Or differently, in many cases where the outcome is 

given, there are causes at work that are not contained in the set of measured factors. However, 

unmeasured causes are likely to confound the data. The existence of potential confounders casts 

doubts on the causal interpretability of all other dependencies subsisting in the data, even on 

dependencies of perfectly consistent sufficiency. For uncontrolled causes might be covertly 

responsible for some of the dependencies manifest in the data. That is, the more likely it is that our 

data are confounded by uncontrolled causes, the less reliable a causal interpretation of resulting 

solution formulas becomes. In our view, suf-coverage of solution formulas should be used as a 

measure for the likelihood of confounding. The higher the coverage, the less likely it becomes that we 

are facing data confounding, the more reliable a causal interpretation of resulting solution formulas. 

We hence submit the same lowest bound for suf-coverage of solution formulas as usually imposed on 

suf-consistency: 0.75. 

A coverage figure of 1 is the ideal, since all cases are then explained. However, it is noted in 

the R package manual29  for CNA that: 

Note that the default consistency and coverage cut-offs of 1 frequently will not yield any atomic 

solution formulas because real-life data tend to feature noise due to uncontrolled background 

influences. In such cases, users should gradually lower consistency and coverage cut-offs (e.g. in 

steps of 0.05) until CNA finds solution formulas – for the aim of a CNA is to find solutions with the 

highest possible consistency and coverage scores. Consistency and coverage cut-offs should only be 

lowered below 0.75 with great caution. If cut-offs of 0.75 do not result in solutions, the corresponding 

data feature such a high degree of noise that there is a severe risk of causal fallacies. 

Now, we don’t have any “noise” in the sense referred to here in our black box, but rather a 

perfectly understandable lottery. We can expect, therefore, that using CNA to explore our 

dataset will raise some problems not covered by these quotes. We also already know that the 

model H=f(C,A,M,E) can produce a solution coverage of 1 but a solution consistency of only 
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0.6. Since the default setting for consistency thresholds in CNA is 1, it is no surprise that, if 

we request a default analysis of H as a function of C, A, M and E, then no solutions are 

reported. We next, therefore, gradually lower the suf-consistency and suf-coverage thresholds 

to explore solutions that are less perfect. If we initially lower them in tandem, following the 

advice in the first quote above, we obtain, once 0.6 is reached: 

--- Coincidence Analysis (CNA) --- 
 
Causal ordering: 
A, M, C, E < H 
 
Minimally sufficient conditions: 
-------------------------------- 
Outcome H: 
  condition consistency coverage 
 A*C   -> H       0.600    0.571 
 A*M   -> H       0.600    0.571 
 C*E*M -> H       0.600    0.286 
 
Atomic solution formulas: 
------------------------- 
Outcome H: 
         condition consistency coverage 
 A*C + A*M   <-> H       0.600    0.857 
 A*C + C*E*M <-> H       0.600    0.714 
 A*M + C*E*M <-> H       0.600    0.714 
 
Complex solution formulas: 
-------------------------- 
           condition consistency coverage 
   (A*C + A*M <-> H)       0.600    0.857 
 (A*C + C*E*M <-> H)       0.600    0.714 
 (A*M + C*E*M <-> H)       0.600    0.714 
 

CNA, because of our having given equal weight to suf-consistency and suf-coverage, has not 

delivered the solution “AC+AM+MCE  <=> H” (suf-consistency=0.6, suf-coverage=1.0). Its 

components are present but have not been combined into the overall expression 

AC+AM+MCE. Faced with AC+AM+MCE , CNA finds it can remove a term and still meet 

the 0.6 consistency threshold for necessity (as well as that for sufficiency). The result is that 

the best solution, taking highest coverage as our guide, would be “AC+AM <-> H (with suf-

consistency=0.6 and suf-coverage=0.857). We have lost CEM and, with it, perfect coverage. 

One way to try to avoid the outcome we have here is to rerun our looped CNAs but without 

the suf-consistency and suf-coverage being equated.  Here, in ignoring the advice in the first 

quote above, we are perhaps, by aiming “to find solutions with the highest possible 

consistency and coverage scores”, following one possible interpretation of the advice in the 

second. Setting suf-coverage to 1, for example, we can gradually reduce the threshold for suf-

consistency from 1.0 to 0.55, recording the CNA output. Then suf-coverage can be set to 

0.95, while suf-consistency reduces from 1.0, and so on. Running this double loop, starting 

with suf-coverage set to 1, we first encounter a solution when suf-consistency reaches 0.6. It 

is, now, as expected, “AC+AM+CEM <=> H” (suf-consistency=0.6, suf-coverage=1)30. Once 
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again, as with fsQCA and QCApro, we have to revise the recommended practice to reach this 

solution. While the R CNA package manual correctly warns that the use of thresholds below 

0.75 leads to a severe risk of causal fallacies we think that, in the context of datasets whose 

generation involves truly random processes, this warning might need qualification.  

 

8: A CNA adding S, i.e. of H=f(C,A,M,E,S) 

What about models including S?  Figure 3 shows the chain we would like to see reported by 

CNA. 

 

 

Figure 3: H=f(C,A,M,E,S) 

 

What actually happens?  First, employing the default settings of 1 for consistency and 

coverage, and the causal ordering given of A, M, C, E < S < H (which assumes some 

hypothetical knowledge of causal relations), we obtain: 

--- Coincidence Analysis (CNA) --- 
 
Causal ordering: 
A, M, C, E < S < H 
 
Minimally sufficient conditions: 
-------------------------------- 
Outcome S: 
  condition consistency coverage 
 A*C   -> S       1.000    0.571 
 A*M   -> S       1.000    0.571 
 C*E*M -> S       1.000    0.286 
 
Atomic solution formulas: 
------------------------- 
Outcome S: 
               condition consistency coverage 
 A*C + A*M + C*E*M <-> S       1.000    1.000 
 
Complex solution formulas: 
-------------------------- 
                 condition consistency coverage 
 (A*C + A*M + C*E*M <-> S)       1.000    1.000 
 

 

We have a perfect solution for S but none for H, since the default threshold for sufficiency is 

set too high to allow a solution for H. Running CNA again, reducing suf-consistency and suf-
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coverage in tandem, as advised in the earlier quote, we finally obtain, when suf-

consistency=suf-coverage=0.6, these complex solutions: 

 

Complex solution formulas: 
-------------------------- 
                         condition consistency coverage 
           (S <-> H)  *  (A <-> S)       0.600    0.857 
   (A*C + A*M <-> H)  *  (A <-> S)       0.600    0.857 
 (A*C + C*E*M <-> H)  *  (A <-> S)       0.600    0.714 
 (A*M + C*E*M <-> H)  *  (A <-> S)       0.600    0.714 
           (S <-> H)  *  (C <-> S)       0.600    0.714 
   (A*C + A*M <-> H)  *  (C <-> S)       0.600    0.714 
 (A*C + C*E*M <-> H)  *  (C <-> S)       0.600    0.714 
 (A*M + C*E*M <-> H)  *  (C <-> S)       0.600    0.714 
           (S <-> H)  *  (M <-> S)       0.600    0.714 
   (A*C + A*M <-> H)  *  (M <-> S)       0.600    0.714 
 (A*C + C*E*M <-> H)  *  (M <-> S)       0.600    0.714 
 (A*M + C*E*M <-> H)  *  (M <-> S)       0.600    0.714 
 

 

Solutions for H now appear and we have some chains such as, taking account of causal 

ordering, A -> S -> H. Once again, however, equalising suf-consistency and suf-coverage has 

produced less good solutions than we know, by design, are available. In particular, coverage 

is always less than one. If, using our knowledge of the causal/generative structure, we set suf-

coverage to 1 and suf-consistency to 0.6, we obtain: 

 

--- Coincidence Analysis (CNA) --- 
 
Causal ordering: 
A, M, C, E < S < H 
 
Minimally sufficient conditions: 
-------------------------------- 
Outcome H: 
  condition consistency coverage 
 S     -> H       0.600    1.000 
 A*C   -> H       0.600    0.571 
 A*M   -> H       0.600    0.571 
 C*E*M -> H       0.600    0.286 
 
Outcome S: 
 condition consistency coverage 
    A -> S       0.750    0.857 
    C -> S       0.625    0.714 
    M -> S       0.625    0.714 
 
Atomic solution formulas: 
------------------------- 
Outcome H: 
               condition consistency coverage 
 A*C + A*M + C*E*M <-> H       0.600    1.000 
 S                 <-> H       0.600    1.000 
 
Complex solution formulas: 
-------------------------- 
                 condition consistency coverage 
 (A*C + A*M + C*E*M <-> H)       0.600    1.000 
                 (S <-> H)       0.600    1.000 
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Now we have two solutions for H, with perfect coverage. However, we have not obtained the 

perfect solution we want for S, i.e. “AC+AM+CEM <-> S” (which would have allowed 

chaining) but rather “AC+AM+CEM <-> H”. The reason appears to be as follows. The use of 

a threshold low enough to allow a solution for H has allowed solutions like A->S to appear 

and therefore ruled out our obtaining AC+AM+CEM -> S, since AC, AM and CEM are not 

minimally sufficient at this consistency level. Consider, as an example, AC. As we know, AC 

is sufficient at a threshold of 1, while A is at 0.75, and C is at 0.625. Therefore removing 

either A or C from AC doesn’t reduce the suf-consistency of the resulting terms below 0.6 

and so CNA does remove them to achieve more minimally sufficient conditions. This leaves 

us with A->S, C->S and M->S. However, it happens that, as a result of the relations between 

the three sets A, C and M, that the suf-consistency of A+C+M falls below 0.6. It is 0.5, as an 

analysis using A+C+M as a combined factor shows. As a result, CNA doesn’t report 

A+C+M=>S as a complex solution. These results arise from our use of one consistency level 

across the two parts of the chain in this integrated analysis of S and H. The solution would 

appear to be – given our knowledge, as designers of this dataset, of all the factors and their 

causal ordering – to undertake two separate analyses, using different consistency thresholds 

for S and H (1 and 0.6 respectively).  The following analyses illustrate this. Consider S. If we 

analyse S=f(C,A,M,E), with a suf-consistency of 0.6, we obtain 

 
--- Coincidence Analysis (CNA) --- 
 
Causal ordering: 
A, M, C, E < S 
 
Minimally sufficient conditions: 
-------------------------------- 
Outcome S: 
 condition consistency coverage 
    A -> S       0.750    0.857 
    C -> S       0.625    0.714 
    M -> S       0.625    0.714 
 
Atomic solution formulas: 
------------------------- 
*none* 
 
Complex solution formulas: 
-------------------------- 
*none* 

 

 

Here, since A+C+M => S only has a suf-con of 0.5, this analysis with a threshold of 0.6 

doesn’t report this disjunction of the minimally sufficient conditions A, C and M as a 

complex solution. Now compare this analysis, of S=f(C,A,M,E), but with suf-consistency set 

to 1: 

 



 
June 2016: Page 22 

 

--- Coincidence Analysis (CNA) --- 
 
Causal ordering: 
A, M, C, E < S 
 
Minimally sufficient conditions: 
-------------------------------- 
Outcome S: 
  condition consistency coverage 
 A*C   -> S       1.000    0.571 
 A*M   -> S       1.000    0.571 
 C*E*M -> S       1.000    0.286 
 
Atomic solution formulas: 
------------------------- 
Outcome S: 
               condition consistency coverage 
 A*C + A*M + C*E*M <-> S       1.000    1.000 
 
Complex solution formulas: 
-------------------------- 
                 condition consistency coverage 
 (A*C + A*M + C*E*M <-> S)       1.000    1.000 

 

Here we have the correct solution for S. It seems then, to solve this {C,A,M,E}->S->H chain 

optimally, we need to run CNA twice31, once for S=f(C,A,M,E) with suf-consistency=suf-

coverage=132 and once  for H=f(S) with suf-consistency=0.6, suf-coverage=1.  

 

9: Discussion  

We should stress that the work reported here is exploratory. We hope that others find it useful 

but that they will, where necessary, draw attention to gaps and/or errors. The crucial feature 

of our invented societies has been the insertion of an intermediating random generative 

process between a set of deterministic causes and an outcome, with a lottery standing in to 

simulate generative randomness. To clearly differentiate the latter from any randomness 

associated with measurement or sampling error, we also assumed that we had population 

level data and there was no measurement or calibration error. This has enabled us to explore 

ways in which the solutions generated by fsQCA, QCApro and CNA are affected by a set-up 

in which low suf-consistency is associated with high suf-coverage, but where there is a clear 

sense in which there is nothing to be done to improve further the suf-consistency parameter.  

We first list what seem to the important findings and implication for current standard/best 

practice. We then reflect on these in a little more detail.  

1. While it is usually recommended that suf-consistency thresholds should be set no 

lower than 0.7533, and that suf-coverage should only be assessed where there is prior 

evidence of quasi-sufficiency, our analysis of the regularity relations characterising 

H=f{C,A,M,E} seems to provide a counterargument. We have shown that it is 

possible, given generative randomness, to have a full explanation of an outcome – 
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reflected in a solution suf-coverage of 1 – while having a solution suf-consistency 

well below the normally recommended threshold. Contrary to what is often said, low 

consistency thresholds do not have to indicate “noise” (in the sense of poor 

measurement and/or sampling) and/or fallacious causal claims. For this reason alone, 

scholars should give equal importance to sufficiency and necessity.  

2. Related to this, we have suggested that our particular low suf-consistency / high suf-

coverage situation can be described in a manner that draws on the usual account of 

probabilistic causation (where causes raise or lower the probability of outcomes) but 

incorporates Boolean ideas by stating that the conditions in the solution are sufficient 

to raise the probability of the outcome to the suf-consistency of the solution (see 

Equation 1 and Equation 2).  We think this approach was already implicitly present in 

Ragin (1995). 

3. Crucially, however, we argued that this move is only properly justified where the 

scholar has enough knowledge of the mechanism and processes linking the causal 

conditions and the outcome to be able to show that, for each case, there is a particular 

dispositional probability of achieving the outcome, given some particular values for 

the causal conditions in the model. In the absence of such knowledge, i.e. if the 

scholar is relying entirely on an analysis of regularities between conditions and 

outcome, the use of the term probability in our equations rather than proportion is not 

properly justified34. To move from proportion to probability, process-tracing and/or 

plausible theorising are needed in addition to regularities.  

4. We have also shown that the use of CNA to uncover chains linking conditions to 

outcomes becomes less straightforward when one of the conditions in an analysis of 

regularities is actually a proxy for some random generative process. It seemed to be 

necessary to run two analyses using different consistency thresholds to find our 

invented chain through S from {C,A,M,E} to H. 

Now, are these conclusions justified? How relevant are they to users of set theoretic 

methods?  It might be argued, in response, that any scholar worth their salt would soon be 

able, via process-tracing, to find the lottery embedded in our invented world and then would 

move to deliver an analysis of S=f{C,A,M,E}with a solution suf-consistency and suf-

coverage of 1 plus a note to explain that 60% of those entering the lottery (S) gained H. This 

is obviously so, but such a response would miss the point of our exploratory exercise. 

Although our use of a simple and transparent example35 allows this response, our purpose has 

been to show that, if there indeed exist random generative processes of the sort that Lieberson 

and Goldthorpe argue characterise the social world (whether they be like our easy to uncover 
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lottery or more like Cournot effects), then several things follow. First, a conventionally very 

low suf-consistency may be acceptable – we could have set our lottery to produce a very low 

solution suf-consistency of 0.3 – as long as it is associated with a high solution suf-coverage 

plus enough knowledge of causal mechanisms to justify the claim that this lowness is due to 

some source(s) of generative randomness rather than causal conditions having been omitted 

from the model. However, such combinations of low suf-consistency and high suf-coverage 

will only be found if a scholar undertakes analyses that ignore the often given advice to only 

assess suf-coverage once suf-consistency has been established at the 0.75 level. Recent work 

that stresses the equal importance of sufficiency and necessity in Boolean analyses of 

causation is helpful here (Baumgartner, 2015; Thiem, 2015a). Also helpful are the 

implementations of set theoretic methods in R (and, we should add, STATA, Longest and 

Vaisey, 2008) that allow the analyst, while analysing the regularities in a dataset, to use 

programming loops to run quickly and efficiently through a range of thresholds for 

consistency and coverage.  

There are some issues that we have not addressed in what is already a long paper. We merely 

note one of these but say a little more about another. First, in the work reported here, we have 

bracketed out measurement and sampling error, whether random or non-random. 

Unfortunately, from the perspective of those who want easy conclusions, any scholar 

undertaking analysis of real as opposed to invented data is faced with these as well as any 

problems arising from random generative processes. Further work is needed to help those 

undertaking set theoretic analysis to identify the separate effects of these on consistency and 

coverage. Clues can be found, of course, from the solution parameters. Introducing 

measurement error or sampling error into our {C,A,M,E,S,H} dataset would, for example, 

except in exceptional circumstances, reduce the solution coverage below 1. However, 

alongside what might be learned from the solution parameters, all of (i) knowledge of 

generative mechanisms and processes, (ii) knowledge of the sampling and measurement 

procedures that produce any truth table, and (iii) careful theoretical reflection and judgement, 

will be required if a scholar is to make progress here.   

Second, putting to one side the Laplacian claim that lotteries, dice-throwing, etc. are only 

apparently random devices, the question arises of whether our set-up is a causal structure or 

merely, at best, a partially causal structure, given that we cannot predict the exact outcome (H 

or not H) for all individual cases.  Schneider and Wagemann (2012: 281) make an important 

relevant claim, arguing that solution formulae should not be the end of a QCA. Rather, the 

solutions and their parameters of fit should be “related back to the individual cases … 
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Researchers should make clear which cases – mentioned by their proper names – are 

(uniquely) covered by which of the paths in the solution formula (typical cases), and which 

are responsible for lower levels of consistency or coverage (deviant cases).” We agree that, in 

general, this is an important and worthwhile goal. However, given something like our lottery 

intervening in the paths to an outcome, the language here would perhaps need revising.  In 

our analysis of H=F{C,A,M,E}, we found that AC+AM+MCE <=> H with suf-consistency 

of 0.6 and suf-coverage of 1. Now, some of the cases in, for example, the configuration AC 

will have gained H, some not. It’s not clear that the two categories are, in the face of the 

generative randomness operating here, appropriately described as respectively “typical” and 

“deviant”. Since if, taking the lottery into account, we look at S=f(C,A,M,E}, we have perfect 

suf-consistency and suf-coverage, i.e. no “deviant” cases, generative randomness does seem, 

once again, to result in a set-up that requires some rethinking of the advice that has been built 

up from thinking about deterministic models plus/minus some “noise” due to measurement 

error, sampling error or omitted factors36.  

Whether Boudon, Lieberson, Goldthorpe and others are correct in arguing that there are 

properly, or at least “as if”, random processes in the world that social researchers must take 

account of in their analyses will continue to be debated. However, we think we have shown 

that, for any set theoretic scholars who do accept their arguments, there are serious 

implications to consider. We hope our exploration of some of these proves helpful.  

1 There is a longstanding philosophical debate about “probability” in general and its relevance to explanation in 

particular disciplines. It is possible to take the position that, were we to have enough theoretical understanding, 

knowledge of initial conditions and computing power we might accurately predict the outcome of, for example, 

a die throw. This was Laplace’s position: see Hacking (1990: 11-12). As Nagel (1961) has noted, even the claim 

that there are essentially random processes operating at the quantum level may be revised. However, we assume 

here, with Lieberson (1997a,b) and Goldthorpe (2016), that chance and randomness are features of the social 

world, and that these can be simulated by such devices as die-throwing. For all practical purposes, we think, we 

can treat a six-sided die, thrown according to appropriate rules, as a set-up that simulates an “objective”, 

dispositional, view of probability (Popper, 1959). 

2 The scare quotes are deliberate here, since, given the history of philosophical debate about both the nature of 

probability and its relevance for social analysis, we need to take care in our own use of the phrase. We note one 

problem straightaway. Lieberson (1997a,b), in his discussion of “chance” in social life, has found inspiration 

and useful models in the analysis of sporting outcomes. An important question, but one Lieberson tends to 

avoid, is exactly when is it appropriate to treat a proportion or an average as reflecting randomness. He writes, 

for example (1997b), when discussing how rules can affect the relative importance of chance factors, “In figure 

skating competitions, suppose there is a difficult move that has a strong chance of failing - say on average 40% 

of the time competitive skaters fall when executing this step” (p.22). His subsequent discussion seems to assume 

                                                           



 
June 2016: Page 26 

 

                                                                                                                                                                                     
that such proportions as this 40% can be taken to represent probabilities. Presumably the justification for this 

position is (i) that there are chance factors operating here and (ii) in a run of attempts skaters have fallen 40% of 

the time. We take the view that considerable caution is required in making such moves from proportions 

(“relative frequencies”) to “true” probabilities. We argue it is dangerous to rely too readily on “as if” notions of 

chance when faced with less than perfect accounts of some outcome, especially when analysis is based simply 

on partial regularities.  

3 Thiem et al. (2016) have noted that much work in this area has been limited by being tied to a particular study 

and dataset. They provide a more general perspective and alternative way forward.  

4 Marx (2006) does discuss randomness, but in the context of the claim by Lieberson (2004) that QCA cannot 

distinguish real from randomly generated data. We think that the distinction referred to, between “randomly 

assigned values (a data matrix with no meaning)” and a “table based on real data” picks out something other 

than what we discuss here. We assume that real data can derive from a partly random process, as when a lottery 

allocates college places.  

5 Schneider and Wagemann, in their textbook, (2012, chapter 11) refer to a variety of causes of less than perfect 

consistency and coverage but not, we think, to generative randomness.  They also (316-7) argue that the use of 

fuzzy sets rather than crisp sets can be seen “as a defence against determinism”. However, we think that our 

current argument supports the view that indeterminism can be handled by crisp and fuzzy sets. Thiem and 

Duşa’s (2013b) textbook also, we think, doesn’t discuss generative randomness. 

6 Little (1995), in a similar manner, discusses truth tables in terms of conditional probabilities, with probability 

defined as the frequency of cases with the outcome in a given subset (p. 9). He also employs the notion of 

“probabilistic causal relations”, allowing a move away from a focus on “exceptionless regularities” to a 

perspective where particular combinations of conditions change the probability of an outcome (p.11). He then 

simulates explanations of revolution, making the weights of the exogenous factors themselves in his “possible 

worlds” probabilistic. Simultaneously, he makes the links between these factors, some intervening factors and 

an outcome probabilistic in each world. Whereas we explore the consequences of a random generative process 

in one otherwise deterministic world, Little uses his probabilistic modelling to construct as many as 700 

different societal settings. Our cases are individuals, his are these settings. He uses an analysis of his simulated 

worlds – partly correlational, partly based on the relation between causal independence and conditional 

probabilities – to argue that theories of causal mechanisms are needed to make sense of the linkages in such 

datasets. We agree. More recently, Rohwer (2011) has discussed deterministic and stochastic functional models 

in relation to QCA. He argues, focusing on “uncertainty” in prediction, that, given what are usually termed 

“contradictions” in truth tables, it may be useful to consider stochastic functional models rather than to aim for 

compatibility with a deterministic model by data modification (by adding conditions, recalibrating, etc.).  A 

consequence of using such stochastic models, he argues, is that it would no longer be possible to think of causes 

in terms of necessary and sufficient conditions (p. 738). We argue that, faced with a dataset that reflects 

generative randomness, rather than “uncertainty” of some unspecified type, it remains appropriate to use these 

terms. 

7 The “probabilities” Ragin refers to might in some cases be better described as proportions of cases in any 

configuration that achieve the outcome. An important question is when is it appropriate to treat such proportions 

as reflecting real “probabilistic processes” rather than, for example, an underspecified model. Feynman (1963), 
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arguing we speak of probability only when contemplating future-oriented estimates, wrote: “the probability of 

an outcome is our estimate for the most likely fraction of a number of repeated observations that will yield the 

outcome”. However, there is an important difference between being able to claim that the estimated probability 

of throwing a six with a standard die is 1/6 because of the (dispositional) symmetry properties of the die and 

being able to claim it is 1/6 on the basis of an experiment with some particular die. When we are not treating die 

throws but rather the sort of data that Ragin is discussing, the latter of these two claims is likely to lead to 

model-based errors in estimating “probability” simply because we cannot always distinguish between there 

being random processes in the world (which might justify the claim that, for any individual with certain 

characteristics, the probability of the outcome is p) and our having an underspecified model of a non-

probabilistic process (where we might more accurately say that, for the set of individuals with these 

characteristics, the proportion with the outcome is p). Sampling and measurement error will, of course, add 

difficulties when we want to claim that proportions reflect generative “probabilistic processes”.  

8 Becker (1994) and Bandura (1982) discuss similar events. Rather than using “random”, Becker uses the terms 

“chance” and “contingency”. Bandura uses such terms as “chance encounters”, “fortuitous encounters”, 

“happenstance”, “fortuitiveness”, “chance”, “fortuity” and “coincidence”. 

9 Bandura (1982: 749) also notes that an event described as a “chance encounter” might be explained by 

reference to other causal narratives: “Although the separate chains of events in a chance encounter have their 

own causal determinants, their intersection occurs fortuitously rather than through deliberate plan (Nagel, 

1961).” 

10 See Hacking (1990: 12).  

11 Goldthorpe (2016: 45-46), referring to “essential chance”, uses this example but takes it from Monod’s (1971) 

Chance and Necessity. Monod distinguishes “essential chance” from “operational chance”, the latter referring to 

the need to take a probabilistic approach to phenomena which may actually be fully determined, but where it is 

practically impossible to employ a deterministic approach.  

12 The “thought to be” matters. See, for example, Nagel (1961: 335). 

13 Some might argue that, actually, the outcome of any die throw is fully determined. For all practical purposes, 

however, a die, if properly symmetric, if thrown according to agreed rules in some particular context, has the 

dispositional property that each side is equally likely to appear. Given six sides, we can then reason that the 

chance of any side appearing is 1 in 6.  

14 A lottery, in principle, can be rerun, as can the pulling of a handle on a casino machine. There are other cases 

of chance in social life where repeating the same event is less imaginable. In an election the result might be 

partly determined by variations in turn-out between constituencies due to weather that happen, contingently, to 

be correlated with varying party support across constituencies. This sort of contingency (Cournot-like) is 

therefore likely to be different to the sort of process our lottery represents. We choose the lottery route because 

it is easier to simulate and interpret. 

15 For a more general focus on regularities, see Pearl (2009).  

16 Researchers employing secondary datasets also are limited by those variables present. 
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17 We should note that, were analyses to be undertaken of these three societies that included some or all of the 

missing intervening factors, then it would be possible, in some cases, to choose between complex, parsimonious 

or intermediate solution types (Ragin, 2008). In Society A, for example, an analysis using fsQCA of Y=f(X,S,Z) 

produces a complex solution Y=XSZ but a parsimonious one Y=Z. This regularities-based analysis of Society A 

would clearly force the analyst to ask further questions concerning both solution type and what counts as a 

correct “causal” account.  While, in analyses of the conditions taken one at a time, Z is sufficient for Y with a 

consistency of 1, S with a consistency of 0.9 and X with a consistency of 0.9, a scholar might want to argue that 

the real cause of Y is “high” ability and, that were a measure of ability available that picked out higher levels of 

ability than X, then this revised X might have a consistency of 1 (Glaesser and Cooper, 2014). Here, however, 

we are using the discussion of intervening factors merely to illustrate and motivate our exploration of the 

consequences of randomness in a set theoretic context. Given that we only analyse the model Y=f(X) in this 

section, we won’t expand this discussion.  

18 Williams & Dyer (2009), having contrasted, from a realist perspective, frequency, propensity and subjectivist 

interpretations of probability, argue that the propensity interpretation has “superior properties in respect of the 

explanation of the relationship of micro- or meso-level events to those at a macro-level” (85). They explore the 

use of cluster analysis to estimate nested “single-case probabilities” for “mentally disordered offenders”. Our 

use of a lottery to generate a truth table creates a similar but simulated set-up that allows us to explore how QCA 

behaves when confronted by probabilistic generative processes. 

19 We noted earlier that many scholars in this area argue for process-tracing, going back to the cases, the use of 

theory, etc. as part of configurational causal analysis. We share this position but, once again for methodological 

reasons, we focus initially on regularities (see Cooper and Glaesser, 2012; Glaesser, 2015; Glaesser & Cooper, 

2011). 

20 We simply assume that there are mechanisms operating that would provide any required causal links.  

21 In Cooper & Glaesser (2016) we explore why and how case weights matter for set theoretic analyses but, here, 

our solution coverage of 1 allows us to make this simplest assumption without, we think, causing our arguments 

any problems.  

22 It is important to note here that this “probability” interpretation might become invalid if, having failed to 

include some of the required causal conditions in our model, we were then to reduce the consistency threshold 

below 0.6 to obtain a solution with perfect coverage. For example, if we were to omit E, then we would need to 

reduce the consistency threshold to 0.3 to obtain the solution AC+AM+CM for H with a solution coverage of 1 

and consistency of 0.525. Now, although 45% of the cases in the configuration CM achieve H, it is no longer 

true that each case in CM has a 0.45 probability in the strict sense of achieving H. On the other hand, were we to 

run this analysis with a threshold of 0.6 but omitting E, then we would obtain the solution AC+AM for H, with a 

reduced solution coverage of 0.857 but with a solution consistency of 0.6, allowing us to retain a truly 

probabilistic interpretation for cases in AC+AM.  

23 If the researcher included S in the model, using a 0.59 cut-off, there would be differences between fsQCA’s 

standard solution types. The parsimonious solution is just S (con=0.6, cov=1), while the complex and 

intermediate solutions (with S,A,C set as positive for the outcome) both add S to all components of the solution 

for H=f(C,A,M,E), giving CAS+MAS+CMES => H.  
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24 We include these assignments to eQMC: sol.type = "ps", row.dom = FALSE,   min.dis = FALSE (Thiem 

2016b:23).  

25 We make use here of our knowledge of the data-generating process, but some argue anyway for a high 

threshold for necessity (Schneider and Wagemann, 2012:278). 

26 If we include S in superSubset’s necessary tests, we obtain fsQCA’s solution in row 1, where cov.r, of course, 

equals the suf-consistency of the solution reported by fsQCA for the simple model, H=f(S): 

 
        incl   cov.r  
--------------------  
1  S    1.000  0.600  
2  M+C  1.000  0.350  
3  A+E  1.000  0.350  
4  A+C  1.000  0.350  
5  A+M  1.000  0.350  
--------------------  

 
27 See Equation 7. Strictly, these terms are not sufficient for H, but for S.  

28 Thiem (2015b) has argued against this. 

29 See Package ‘cna’ (April 18, 2015), https://cran.r-project.org/web/packages/cna/cna.pdf, downloaded 29th 

July 2015. 

30 Care is needed in choosing between the solutions this double loop produces. For example, when cov is set to 

0.85, and con to 0.6, we get the single complex solution “AC+AM <-> H”. The other two solutions we have 

previously seen, “AC+CEM <-> H” and “AM+CEM <-> H” disappear, since their coverage (0.714) becomes 

too low.     

31 Responding to Baumgartner & Epple (2014), Thiem (2015b) shows that QCA can be used sequentially to 

analyse chains. He also takes a different position from Baumgarter & Epple (2014) concerning the relation 

between model specification and coverage thresholds (see Thiem, 2015b:6). QCApro makes it easy to analyse 

several outcomes simultaneously. Using our dataset with all of {C,A,M,E,S,H} present in the analysis, the R 

code for QCApro below (where, note, we do need to employ an unconventional threshold of 0.6) will produce 

the elements of the chain amongst its listed outputs. In detail: the code “lottery.cna.QCApro <- 

eQMC(lotterymodeldataCAMESH, outcome = names(lotterymodeldataCAMESH), relation = "sufnec", 

incl.cut1 = .6, row.dom=FALSE, min.dis=FALSE)”, following the author’s advice on setting both row.dom and 

min-dis to FALSE for causal analysis (see also Baumgartner & Thiem, 2015c), produces: 

There is no solution for outcome "C". 
 
There is no solution for outcome "M". 
 
M1: cS + eS + mS <=> A 
 
There is no solution for outcome "E". 
 
M1: CA + MA + CME <=> S 
 
M1: S <=> H  
 
M2: CA + MA + CME <=> H  
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32 We’ve used our designer’s knowledge here. In fact, using a threshold of 0.75 or above will produce the 

correct result. A loop could be used to explore results as the threshold is varied. 

33 See, for example, Schneider & Wagemann (2012: 127-8). Having noted there shouldn’t be any hard and fast 

rule, they nevertheless note that values below 0.75 are often problematic. They rule out 0.5 for “obvious 

reasons” as then “half of the empirical evidence contradicts the subset relational statement of sufficiency”. 

However, in the case of our lottery-based world, if we were to reset our winners’ proportion to 50%, we could 

argue for accepting a threshold as low as 0.5.  The authors do note that the specific research context matters. We 

seem to have invented a partially deterministic context that makes 0.6 (or even 0.5) an acceptable threshold.  

34 This problem is not one merely for set theoretic analyses. It applies to regression modelling and other forms of 

analysis.  

35 Other cases with similarities to our lottery-based simulation could be considered.  For example, it is neither 

difficult or, arguably, unrealistic to imagine a world in which entry to a career demands certain qualification 

whose gaining by individuals might be largely causally accounted for, but where subsequent progress in the 

career is highly unpredictable because of Cournot effects.  

36 The literature on residuals analysis in regression modelling is likely to provide some help here.  
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